Markscheme

May 2018

Mathematical studies

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Paper 2 Markscheme Instructions to Examiners

Notes: If in doubt about these instructions or any other marking issues, contact your team leader

 for clarification.
1 Abbreviations

M Marks awarded for Method
A Marks awarded for an Answer or for Accuracy
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning
G Marks awarded for correct solutions obtained from a Graphic Display Calculator, when no working shown.

AG Answer Given in the question and consequently, marks not awarded.
ft Marks that can be awarded as follow through from previous results in the question.

Method of Marking

(a) All marking must be done in RM Assessor using the mathematical studies annotations and in accordance with the current document for guidance in e-marking Mathematical Studies SL. It is essential that you read this document before you start marking.
(b) If a question part is completely correct use the number tick annotations to award full marks. If a part is completely wrong use the $\boldsymbol{A O}$ annotation, otherwise full annotations must be shown.
(c) Working crossed out by the candidate should not be awarded any marks.
(d) Where candidates have written two solutions to a question, only the first solution should be marked.
(e) If correct working results in a correct answer but then further working is developed, indicating a lack of mathematical understanding full marks should not be awarded. In most such cases it will be a single final answer mark that is lost. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal.

Example:

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final (A1) (ignore the further working)
2.	$(x-6)(x+1)$	$x=6$ and -1	Do not award the final (A1)

Example: Calculate the gradient of the line passing through the points $(5,3)$ and $(0,9)$.

Markscheme	Candidates' Scripts Marking
$\frac{9-3}{0-5}$ (M1) Award (M1) for correct substitution in gradient formula $=-\frac{6}{5}$ (A1)	(i) $\frac{9-3}{0-5}=-\frac{6}{5}$ (M1) Gradient is $=-\frac{6}{5}$ (A1) (There is clear understanding of the gradient.) $y=-\frac{6}{5} x+9$ (ii) $\begin{align*} & \frac{9-3}{0-5}=-\frac{6}{5} \tag{M1}\\ & y=-\frac{6}{5} x+9 \end{align*}$ (AO) (There is confusion about what is required.)

3 Follow-through (ft) Marks

Errors made at any step of a solution affect all working that follows. To limit the severity of the penalty, follow through (ft) marks can be awarded. Markschemes will indicate where it is appropriate to apply follow through in a question with '(ft)'.
(a) Follow through applies only from one part of a question to a subsequent part of the question. Follow through does not apply within the same part.
(b) If an answer resulting from follow through is extremely unrealistic (eg, negative distances or incorrect by large order of magnitude) then the final \boldsymbol{A} mark should not be awarded.
(c) If a question is transformed by an error into a different, much simpler question then follow through may not apply.
(d) To award follow through marks for a question part, there must be working present for that part. An isolated follow through answer, without working is regarded as incorrect and receives no marks even if it is approximately correct.
(e) The exception to the above would be in a question which is testing the candidate's use of the GDC, where working will not be expected. The markscheme will clearly indicate where this applies.
(f) Inadvertent use of radians will be penalized the first time it occurs. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for the use of radians.

Example: Finding angles and lengths using trigonometry

(a) \boldsymbol{A} marks are dependent on the preceding \boldsymbol{M} mark being awarded, it is not possible to award (MO)(A1). Once an (MO) has been awarded, all subsequent \boldsymbol{A} marks are lost in that part of the question, even if calculations are performed correctly, until the next \boldsymbol{M} mark.
The only exception to this will be for an answer where the accuracy is specified in the question - see section 5.
(b) \boldsymbol{A} marks are dependent on the \boldsymbol{R} mark being awarded, it is not possible to award ($\boldsymbol{A 1} \mathbf{)}(\boldsymbol{R 0})$. Hence the (A1) cannot be awarded for an answer which is correct when no reason or the wrong reason is given.
(c) In paper 2 candidates are expected to demonstrate their ability to communicate mathematics using appropriate working. Answers which are correct but not supported by adequate working will not always receive full marks, these unsupported answers are designated G in the mark scheme as an alternative to the full marks. Example (M1)(A1)(A1)(G2).

Example: Using trigonometry to calculate an angle in a triangle.

Markscheme	Candidates' Scripts	Marking
(a) $\frac{\sin A}{3}=\frac{\sin 30}{4} \quad$ (M1)(A1) Award (M1) for substitution in sine rule formula, (A1) for correct substitutions. $A=22.0^{\circ}(22.0243 \ldots) \quad(A 1)(G 2)$	(i) $\begin{aligned} & \frac{\sin A}{3}=\frac{\sin 30}{4} \\ & A=22.0^{\circ} \end{aligned}$ (ii) $A=22.0^{\circ}$ Note: G marks are used only and the answer is correct.	(M1)(A1) (A1) (G2) has been shown

(d) Alternative methods may not always be included. Thus, if an answer is wrong then the working must be carefully analysed in order that marks are awarded for a different method consistent with the markscheme.
Where alternative methods for complete questions are included in the markscheme, they are indicated by 'OR' etc.
(e) Unless the question specifies otherwise, accept equivalent forms. For example: $\frac{\sin \theta}{\cos \theta}$ for $\tan \theta$. On the markscheme, these equivalent numerical or algebraic forms will sometimes be written in brackets after the required answer.
Where numerical answers are required as the final answer to a part of a question in the markscheme, the scheme will show, in order:
the 3 significant figure answer worked through from full calculator display;
the exact value (for example $\frac{2}{3}$ if applicable);
the full calculator display in the form $2.83163 \ldots$ as in the example above.
Where answers are given to 3 significant figures and are then used in subsequent parts of the question leading to a different 3 significant figure answer, these solutions will also be given.
(f) As this is an international examination, all valid alternative forms of notation should be accepted. Some examples of these are:

Decimal points: $1.7 ; 1{ }^{\prime} 7 ; 1 \cdot 7 ; 1,7$.
Decimal numbers less than 1 may be written with or without a leading zero: 0.49 or .49 .
Different descriptions of an interval: $3<x<5 ;(3,5) ;$] 3,5 [.
Different forms of notation for set properties (eg, complement): $\quad A^{\prime} ; \bar{A} ; A^{c} ; U-A ;(A ; U \backslash A$.
Different forms of logic notation: $\quad \neg p ; p^{\prime} ; \tilde{p} ; \bar{p} ; \sim p$.

$$
p \Rightarrow q ; p \rightarrow q ; q \Leftarrow p
$$

Significance level may be written as α.
(g) Discretionary marks: There will be very rare occasions where the markscheme does not cover the work seen. In such cases the annotation DM should be used to indicate where an examiner has used discretion. Discretion should be used sparingly and if there is doubt an exception should be raised through RM Assessor to the team leader.

As with previous sessions there will be no whole paper penalty marks for accuracy AP, financial accuracy FP and units UP. Instead these skills will be assessed in particular questions and the marks applied according to the rules given in sections 5,6 and 7 below.

5 Accuracy of Answers

Incorrect accuracy should be penalized once only in each question according to the rules below.
Unless otherwise stated in the question, all numerical answers should be given exactly or correct to 3 significant figures.

1. If the candidate's answer is seen to 4 sf or greater and would round to the required 3 sf answer, then award (A1) and ignore subsequent rounding.
2. If the candidate's unrounded answer is not seen then award (A1) if the answer given is correctly rounded to 2 or more significant figures, otherwise (AO).
Note: If the candidate's unrounded answer is not seen and the answer is given correct to 1 sf (correct or not), the answer will be considered wrong and will not count as incorrect accuracy. If this answer is used in subsequent parts, then working must be shown for further marks to be awarded.
3. If a correct 2 sf answer is used in subsequent parts, then working must be shown for further marks to be awarded. (This treatment is the same as for following through from an incorrect answer.)

These 3 points (see numbers in superscript) have been summarized in the table below and illustrated in the examples following.

	If candidates final answer is given ...					
	Exact or to 4 or more sf (and would round to the correct 3 sf)	Correct to 3 sf	Incorrect to $3 \mathbf{s f}$	$\begin{gathered} \text { Correct to } \\ 2 \mathrm{sf}^{3} \end{gathered}$	Incorrect to 2 sf	Correct or incorrect to 1 sf
Unrounded answer seen ${ }^{1}$	Award the final (A1) irrespective of correct or incorrect rounding					
Unrounded answer not seen ${ }^{2}$	(A1)	(A1)	(AO)	(A1)	(AO)	(AO)
Treatment of subsequent parts	As per MS		Treat as follow through, only if working is seen. ${ }^{3}$			

Examples:

Example: $\quad \mathrm{ABC}$ is a right angled triangle with angle $\mathrm{ABC}=90^{\circ}, \mathrm{AC}=32 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$. Find (a) the length of BC , (b) The area of triangle ABC .

Markscheme	Candidates' Scripts \quad Marking
(a) $\mathrm{BC}=\sqrt{32^{2}-30^{2}}$ (M1) Award (M1) for correct substitution in Pythagoras' formula $=11.1(\sqrt{124}, 11.1355 \ldots)(\mathrm{cm})(\boldsymbol{A} 1)$ (b) Area $=\frac{1}{2} \times 30 \times 11.1355 \ldots$ (M1) Award (M1) for correct substitution in area of triangle formula $=167(167.032 \ldots)\left(\mathrm{cm}^{2}\right)$ (A1)(ft)	(a) $\mathrm{BC}=\sqrt{32^{2}-30^{2}}$ (M1) 11 (cm) (A1) (2 sf answer only seen, but correct) (b) $\begin{aligned} \text { case (i) } \quad \text { Area } & =\frac{1}{2} \times 30 \times 11 \\ & =165\left(\mathrm{~cm}^{2}\right) \\ \text { case (ii) } \quad & =165\left(\mathrm{~cm}^{2}\right) \end{aligned}$ (M1) (working shown) $(\mathrm{A} 1)(\mathrm{ft})$ $(M O)(A O)(f t)$ (No working shown, the answer 11 is treated as a ft, so no marks awarded here)

Certain answers obtained from the GDC are worth 2 marks and working will not be seen. In these cases only one mark should be lost for accuracy.
eg, Chi-squared, correlation coefficient, mean

Markscheme	Candidates' Scripts		Marking
Chi-squared	(a) 7.7	(G2)	
$7.68(7.67543 \ldots)$ (A2)	(b) 7.67	(G1)	
	(c) 7.6	(G1)	
	(d) 8	(G0)	
	(e) 7	(GO)	
	(e) 7.66	(GO)	

Regression line

Maximum/minimum/points of intersection

Rounding of an exact answer to 3 significant figures should be accepted if performed correctly. Exact answers such as $\frac{1}{4}$ can be written as decimals to fewer than 3 significant figures if the result is still exact. Reduction of a fraction to its lowest terms is not essential, however where an answer simplifies to an integer this is expected. Fractions that include a decimal in the numerator and/or the denominator are acceptable for showing correct substitution, but not as a final answer.

Ratios of π and answers taking the form of square roots of integers or any rational power of an integer (eg, $\sqrt{13}, 2^{\frac{2}{3}}, \sqrt[4]{5}$,) may be accepted as exact answers. All other powers (eg, of non-integers) and values of transcendental functions such as sine and cosine must be evaluated.

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. In all such cases the final mark is not awarded if the rounding does not follow the instructions given in the question. A mark for specified accuracy can be regarded as a (ft) mark regardless of an immediately preceding (MO).

6 Level of accuracy in finance questions

The accuracy level required for answers will be specified in all questions involving money. This will usually be either whole units or two decimal places. The first answer not given to the specified level of accuracy will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for incorrect accuracy in a financial question.

Example: A financial question demands accuracy correct to 2 dp .

Units in answers

There will be specific questions for which the units are required and this will be indicated clearly in the markscheme. The first correct answer with no units or incorrect units will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one or two mark per paper can be lost for lack of units or incorrect units.
The units are considered only when the numerical answer is awarded (A1) under the accuracy rules given in Section 5.

Example:

Markscheme	Candidates' Scripts		Marking
(a) $37000 \mathrm{~m}^{2}$	(A1)	(a) $36000 \mathrm{~m}^{2}$	(AO)
(b)	$3200 \mathrm{~m}^{3}$	(A1)	(b) $3200 \mathrm{~m}^{2}$

If no method is shown and the answer is correct but with incorrect or missing units award G marks with a one mark penalty.

8 Graphic Display Calculators
Candidates will often be obtaining solutions directly from their calculators. They must use mathematical notation, not calculator notation. No method marks can be awarded for incorrect answers supported only by calculator notation. The comment 'I used my GDC' cannot receive a method mark.

1. (a) $a=0.2, b=0.85$
(A1)(A1)

Note: Award (A1) for each correct value.
(b) (i) 0.25×0.8

Note: Award (M1) for a correct product.

$$
=0.2\left(\frac{1}{5}, 20 \%\right)
$$

(A1)(G2)

(ii) $0.25 \times 0.8+0.75 \times 0.15$
(A1)(ft)(M1)

Note: Award (A1)(ft) for their (0.25×0.8) and (0.75×0.15), (M1) for adding two products.

$$
=0.313\left(0.3125, \frac{5}{16}, 31.3 \%\right)
$$

(A1)(ft)(G3)

Note: Award the final (A1)(ft) only if answer does not exceed 1.
Follow through from part (b)(i).
(iii) $\frac{0.25 \times 0.8}{0.25 \times 0.8+0.75 \times 0.15}$
(A1)(ft)(A1)(ft)

Note: Award (A1)(ft) for a correct numerator (their part (b)(i)), (A1)(ft) for a correct denominator (their part (b)(ii)). Follow through from parts (b)(i) and (b)(ii).

$$
=0.64\left(\frac{16}{25}, 64 \%\right)
$$

(A1)(ft)(G3)

Note: Award final (A1)(ft) only if answer does not exceed 1.
(c) (i) $\quad(x=) 3$
(A1)
(A1)(ft)

Note: Following through from part (c)(i) but only if their x is less than or equal to 13 .
[2 marks]
continued...

Question 1 continued
(d) $54-(10+3+4+2+6+8+13)$

Note: Award (M1) for subtracting their correct sum from 54. Follow through from their part (c).
$=8$
(A1)(ft)(G2)

Note: Award (A1)(ft) only if their sum does not exceed 54. Follow through from their part (c).
(e) $6+8+13$
(M1)

Note: Award (M1) for summing 6, 8 and 13.
2. (a) $28-20$

Note: Award (A1) for 28 and 20 seen.
8
(b) (i) 13500
(G2)
Note: Accept an answer in the range 13500 to 13750.
(ii) 10000

Note: Accept an answer in the range 10000 to 10250.
(iii) 16000
(G1)

Note: Accept an answer in the range 16000 to 16250.
(c) 6000
(A1)(ft)
Note: Follow through from their part (b)(ii) and (iii).
(d) 25%
(e) 11
(f) $30-8$ OR 22
(M1)
Note: Award (M1) for subtracting 30-8 or 22 seen.

15750
(A1)(G2)
Note: Accept 15750 ± 250.

Question 2 continued
(g)

(A1)(A1)(A1)(A1)
Note: Award (A1) for correct label and scale; accept "distance" or "km" for label.
(A1)(ft) for correct median,
(A1)(ft) for correct quartiles and box,
(A1) for endpoints at 2500 and 23000 joined to box by straight lines.
Accept ± 250 for the median, quartiles and endpoints.
Follow through from their part (b).
The final (A1) is not awarded if the line goes through the box.
3. (a) (i) $\mathrm{P}(W<61)$
(M1)

Note: Award (M1) for correct probability statement.
OR

(M1)
Note: Award (M1) for correct region labelled and shaded on diagram.

$$
=0.212(0.21185 \ldots, 21.2 \%)
$$

(ii) $40 \times 0.21185 \ldots$
(A1)(G2)
(M1)

Note: Award (M1) for product of 40 and their 0.212 .

$$
=8.47 \text { (8.47421...) }
$$

(A1)(ft)(G2)
Note: Follow through from their part (a)(i) provided their answer to part (a)(i) is less than 1.

Question 3 continued
(b) (i)

(A1)(M1)
Note: Award (A1) for two correctly labelled vertical lines in approximately correct positions. The values 57.5 and 72.5 , or $\mu-1.5 \sigma$ and $\mu+1.5 \sigma$ are acceptable labels. Award (M1) for correctly shaded region marked by their two vertical lines.
(ii) 0.866 ($0.86638 \ldots, 86.6 \%)$
(A1)(ft)
Note: Follow through from their part (b)(i) shaded region if their values are clear.
(c) $\mathrm{P}(W<k)=0.775$
(M1)
OR

Note: Award (A1) for correct region labelled and shaded on diagram.

$$
(k=) 68.8 \quad(68.7770 \ldots)
$$

(A1)(G2)

Question 3 continued
(d) (i) (H_{0} :) performance (of players) and (their) weight are independent.

Note: Accept "there is no association between performance (of players) and (their) weight". Do not accept "not related" or "not correlated" or " not influenced".
(ii) 0.287 (0.287436...)
(G2)
[2 marks]
(e) accept/ do not reject null hypothesis/ H_{0}
(A1)(ft)

OR

performance (of players) and (their) weight are independent.
(A1)(ft)
$0.287>0.05$
(R1)(ft)

Note: Accept p-value>significance level provided their p-value is seen in b (ii). Accept $28.7 \%>5 \%$. Do not award (A1)(R0). Follow through from part (d).
4. (a) $60+10 \times 10$
(M1)(A1)

Note: Award (M1) for substitution into the arithmetic sequence formula, (A1) for correct substitution.

$$
=\text { = \$) } 160
$$

(A1)(G3)

(b) $\frac{12}{2}(2 \times 60+11 \times 10)$
(M1)(A1)(ft)

Note: Award (M1) for substituting the arithmetic series formula, (A1)(ft) for correct substitution. Follow through from their first term and common difference in part (a).

$$
=(\$) 1380
$$

(A1)(ft)(G2)
[3 marks]
(c) 60×1.1^{10}
(M1)(A1)

Note: Award (M1) for substituting the geometric progression nth term formula, (A1) for correct substitution.

$$
=(\$) 156 \quad(155.624 \ldots)
$$

(A1)(G3)

Note: Accept the answer if it rounds correctly to 3 sf, as per the accuracy instructions.
[3 marks]
(d) $\frac{60\left(1.1^{12}-1\right)}{1.1-1}$
(M1)(A1)(ft)

Note: Award (M1) for substituting the geometric series formula, (A1)(ft) for correct substitution. Follow through from part (c) for their first term and common ratio.

$$
=(\$) 1280 \quad(1283.05 \ldots)
$$

(A1)(ft)(G2)

Question 4 continued
(e) $\frac{60\left(1.1^{n}-1\right)}{1.1-1}>\frac{n}{2}(2 \times 60+(n-1) \times 10)$
(M1)(M1)

Note: Award (M1) for correctly substituted geometric and arithmetic series formula with n (accept other variable for " n "), (M1) for comparing their expressions consistent with their part (b) and part (d).

OR

Note: Award (M1) for two curves with approximately correct shape drawn in the first quadrant, (M1) for one point of intersection with approximate correct position.

Accept alternative correct sketches, such as

Award (M1) for a curve with approximate correct shape drawn in the $1^{\text {st }}$ (or $4^{\text {th }}$) quadrant and all above (or below) the x-axis, (M1) for one point of intersection with the x-axis with approximate correct position.

17
(A2)(ft)(G3)

Note: Follow through from parts (b) and (d).
An answer of 16 is incorrect. Award at most (M1)(M1)(AO)(AO) with working seen.
Award (GO) if final answer is 16 without working seen.
5. (a) (i) $\frac{\sin \mathrm{BAC}}{37}=\frac{\sin 60}{56}$
(M1)(A1)

Note: Award (M1) for substituting the sine rule formula, (A1) for correct substitution.
angle $B \hat{A} C=34.9034 \ldots$.
(A1)

Note: Award (AO) if unrounded answer does not round to 35 .
Award (G2) if 34.9034... seen without working.
angle $A \hat{B} C=180-(34.9034 \ldots+60)$

Note: Award (M1) for subtracting their angle BAC +60 from 180.

> 85.0965...ْ
(A1)
85°
(AG)

Note: Both the unrounded and rounded value must be seen for the final (A1) to be awarded. If the candidate rounds $34.9034 \ldots$ to 35° while substituting to find angle ABC, the final (A1) can be awarded but only if both $34.9034 \ldots$... and 35° are seen.
If 85 is used as part of the workings, award at most (M1)(AO)(AO)(MO)(AO)(AG). This is the reverse process and not accepted.
(ii) $\sin 85 \ldots \times 56$
$=55.8$ (55.7869...) (m)
(A1)(G2)

Note: Award (M1) for correct substitution in trigonometric ratio.

Question 5(a) continued
(iii) $\sqrt{56^{2}-55.7869 \ldots{ }^{2}}$

Note: Award (M1) for correct substitution in the Pythagoras theorem formula. Follow through from part (a)(ii). OR

$$
\begin{equation*}
\cos (85) \times 56 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correct substitution in trigonometric ratio.

$$
=4.88(4.88072 \ldots)(\mathrm{m})
$$

Note: Accept 4.73 (4.72863...) (m) from using their 3 s.f answer. Accept equivalent methods.

Question 5 continued
(b) $\left|\frac{4.88-3.9}{3.9}\right| \times 100$
(M1)

Note: Award (M1) for correct substitution into the percentage error formula.

$$
=25.1 \quad(25.1282) \quad(\%)
$$

(A1)(ft)(G2)
Note: Follow through from part (a)(iii).
(c) $\tan ^{-1}\left(\frac{55.7869 \ldots}{40.11927 \ldots}\right)$
(A1)(ft)(M1)

Note: Award (A1)(ft) for their 40.11927... seen. Award (M1) for correct substitution into trigonometric ratio.

OR
$(37-4.88072 \ldots)^{2}+55.7869 \ldots{ }^{2}$
($\mathrm{AC}=$) 64.3725...
$64.3726 \ldots{ }^{2}+8^{2}-2 \times 8 \times 64.3726 \ldots \times \cos 120$
($\mathrm{AD}=$) 68.7226...
$\frac{\sin 120}{68.7226 \ldots}=\frac{\sin \mathrm{AD} \mathrm{C}}{64.3725 \ldots}$
(A1)(ft)(M1)

Nota: Award (A1)(ft) for their correct values seen, (M1) for correct substitution into the sine formula.
$=54.3^{\circ} \quad\left(54.2781 \ldots{ }^{\circ}\right)$
(A1)(ft)(G2)
Note: Follow through from part (a). Accept equivalent methods.
6. (a)

(A1)(A1)(A1)(A1)
Note: Award (A1) for correct window (condone a window which is slightly off) and axes labels. An indication of window is necessary. -1 to 3 on the x-axis and -2 to 12 on the y-axis and a graph in that window.
(A1) for correct shape (curve having cubic shape and must be smooth).
(A1) for both stationary points in the $1^{\text {st }}$ quadrant with approximate correct position,
(A1) for intercepts (negative x-intercept and positive y intercept) with approximate correct position.
(b) Rick

Note: Award (AO) if extra names stated.
(c) $2(1)^{3}-9(1)^{2}+12(1)+2$
(M1)

Note: Award (M1) for correct substitution into equation.

$$
=7
$$

(A1)(G2)
(d) $6 x^{2}-18 x+12$
(A1)(A1)(A1)

Note: Award (A1) for each correct term. Award at most (A1)(A1)(A0) if extra terms seen.
(e) $6 x^{2}-18 x+12=0$
(M1)
Note: Award (M1) for equating their derivative to 0 . If the derivative is not explicitly equated to 0 , but a subsequent solving of their correct equation is seen, award (M1).

$$
\begin{equation*}
6(x-1)(x-2)=0 \quad \text { (or equivalent) } \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correct factorization. The final (M1) is awarded only if answers are clearly stated.
Award (MO)(MO) for substitution of 1 and of 2 in their derivative.
$x=1, x=2$
(AG)
(f) $6<k<7$
(A1)(A1)(ft)(A1)

Note: Award (A1) for an inequality with 6, award (A1)(ft) for an inequality with 7 from their part (c) provided it is greater than 6, (A1) for their correct strict inequalities. Accept] 6, 7[or (6, 7).

